HP Spectre x360

Official resources Software and driver results for: HP Spectre 13-ac000 x360 Convertible PC [LINK] 설치/설정 HP Notebook PCs – Updating the BIOS [LINK] 윈도우10 노트북 덮어도 안꺼지게 설정하는 방법, 절전모드 해제하기 [LINK] HP 스펙터 x360: 터치패드를 프리시전으로 만들기 [LINK] HP 스펙터 x360: 발열 문제 해결 방법 [LINK] Battery drain problem 노트북 배터리 자연 방전 | HP […]

Conditional Generative Adversarial Nets | M. Mirza, S. Osindero | 2014

Introduction Conditional version of Generative Adversarial Nets (GAN) where both generator and discriminator are conditioned on some data y (class label or data from some other modality). Architecture Feed y into both the generator and discriminator as additional input layers such that y and input are combined in a joint hidden representation.

Studying Generative Adversarial Networks (GANs)

References Lecture 13: Generative Models. CS231n: Convolutional Neural Networks for Visual Recognition. Spring 2017. [SLIDE][VIDEO] Generative Adversarial Nets. Goodfellow et al.. NIPS 2014. 2014. [LINK][arXiv] How to Train a GAN? Tips and tricks to make GANs work. Soumith Chintala. github. [LINK] The GAN Zoo. Avinash Hindupur. github. [LINK]

Lecture 2: Markov Decision Processes | Reinforcement Learning | David Silver | Course

1. Markov Process / Markov chain 1.1. Markov process A Markov process or Markov chain is a tuple such that is a finite set of states, and is a transition probability matrix. In a  Markov process, the initial state should be given. How do we choose the initial state is not a role of the Markov process. 1.2. State […]

Reinforcement Learning | David Silver | Course

Brief information Instructor: David Silver Course homepage: [LINK] Video lecture list: [LINK] Lecture schedule Lecture 1: Introduction to Reinforcement Learning Lecture 2: Markov Decision Processes Lecture 3: Planning by Dynamic Programming Lecture 4: Model-Free Prediction Lecture 5: Model-Free Control Lecture 6: Value Function Approximation Lecture 7: Policy Gradient Methods Lecture 8: Integrating Learning and Planning […]

Inception Module | Summary

References Udacity (2016. 6. 6.). Inception Module. YouTube. [LINK] Udacity (2016. 6. 6.). 1×1 Convolutions. YouTube. [LINK] Tommy Mulc (2016. 9. 25.). Inception modules: explained and implemented. [LINK] Szegedy et al. (2015). Going Deeper with Convolutions. CVPR 2015. [arXiv] Summary History The inception module was first introduced in GoogLeNet for ILSVRC’14 competition. Key concept Let a convolutional network decide […]

Graduate School Guide | Summary

References A Survival Guide to a PhD. Andrej Karpathy blog. Sep 7, 2016 [LINK] HOWTO: Get into grad school for science, engineering, math and computer science [LINK] 대학원생을 위한 지극히 개인적인 10가지 조언 [LINK] 논문 읽기 초보자를 위한 Literature survey (문헌 조사) 팁! [LINK] 석사와 박사 [LINK] 내가 대학원에서 생존한 방법 [LINK] 박사 과정을 통해 배운 것들 […]