[YouTube] Demis Hassabis, CEO, DeepMind Technologies – The Theory of Everything

Worth to studying Physics Neuroscience “What I cannot build, I don not understand.” – Richard Feynman Theme Park: one of the games Demis made Demis’ interest areas in the Ph.D course: imagination and memory DeepMind was founded in 2018. is an Apollo prgramme for AI (>100 scientist from machine learning fields and neuroscience fields) Neuroscience-inspired […]

Sequence Modeling | Deep Learning Specialization | Coursera

Course planning Week 1: Recurrent neural networks Learn about recurrent neural networks. This type of model has been proven to perform extremely well on temporal data. It has several variants including LSTMs, GRUs and Bidirectional RNNs, which you are going to learn about in this section. Lectures: Recurrent neural networks C4W1L01 Why sequence models C4W1L02 […]

Convolutional Neural Networks | Deep Learning Specialization | Coursera

Course Planning Week 1: Foundations of convolutional neural networks Learn to implement the foundational layers of CNNs (pooling, convolutions) and to stack them properly in a deep network to solve multi-class image classification problems. Convolutional neural networks C4W1L01 Computer vision C4W1L02 Edge detection example C4W1L03 More edge detection C4W1L04 Padding C4W1L05 Strided convolutions C4W1L06 Convolutions over […]

Neural Networks and Deep Learning | Deep Learning Specialization | Coursera

Lecture Planning Week 1: Introduction to Deep Learning Welcome to the Deep Learning Specialization C1W1L01 Welcome Introduction to Deep Learning C1W1L02 Welcome C1W1L03 What is a neural network? C1W1L04 Supervised Learning with Neural Networks C1W1L05 Why is Deep Learning taking off? C1W1L06 About this Course C1W1R1 Frequently Asked Questions C1W1L07 Course Resources C1W1R2 How to use […]

Curriculum Learning | Bengio et al. | ICML 2009 | 2009

Brief information Authors: Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston Published year: 2009 Publication: ICML 2009 Abstract Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones. We formalize such training strategies in the context of […]

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization | Deep Learning Specialization | Coursera

Brief information Course name: Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization Instructor: Andrew Ng Institution: deeplearning.ai Media: Coursera Specialization: Deep Learning Duration: 3 weeks About this Course This course will teach you the “magic” of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand […]

One-Shot Imitation Learning | Yan Duan et al. | 2017

Summary Abstract Ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engineering. In this paper, we propose a meta-learning framework for achieving such capability, which we call one-shot imitation learning. Task examples: to stack all blocks […]

Structuring Machine Learning Projects | Deep Learning Specialization | Coursera

Brief information Course name: Structuring Machine Learning Projects Instructor: Andrew Ng Institution: deeplearning.ai Media: Coursera Specialization: Deep Learning Duration: 2 weeks About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team’s work, this […]

Conditional Generative Adversarial Nets | M. Mirza, S. Osindero | 2014

Introduction Conditional version of Generative Adversarial Nets (GAN) where both generator and discriminator are conditioned on some data y (class label or data from some other modality). Architecture Feed y into both the generator and discriminator as additional input layers such that y and input are combined in a joint hidden representation.