
Advanced Programming 2015

Homework #6

• Make class MyDoubleVector similar to class
vector<double> in STL and also write a test program
to check that all the member functions/operators of
your class MyDoubleVector work correctly.

 class MyDoubleVector {
 public:
 …
 private:
 double *data;
 …
 };

Constraints

• Use a “pointer to a double” variable and dynamic
memory allocation by the new operator.
– double *data; // private member

• Do not use any static array!

Members to be Implemented

• Default constructor
– MyDoubleVector();

• Copy constructor for deep copy
– MyDoubleVector(const MyDoubleVector& v);

• Destructor
– ~MyDoubleVector();

• Assignment operator (=) for deep copy
– Chaining assignment should be possible.

Members to be Implemented

• Operator: +=
– Appends RHS object to LHS one.

• Operator: []

– Returns a reference to the element at the requested
position in the vector container.

– If the requested position is out of range, it should output
some messages and terminate the program.

Members to be Implemented

• (Binary) operator: +
– Returns a object that is a vector-sum of the two operand

objects.

• (Binary) operator: -
– Returns a object that is a vector-difference of the two

operand objects.

• (Binary) operator: *
– Returns the scalar product (or dot product) value of the

two operand objects.
 Note that the above three operators are applicable only when

the sizes of the two operands is the same.

Members to be Implemented

• (Unary) operator: -
– Returns a object of which each element is the unary

negation of the corresponding element in the operand
object.

• (Binary) operator: ==
– Returns whether or not the two operand vectors are the

same. (You should check if their sizes are the same. Do not
check their capacities.)

• (Unary) operator: ()
– Makes every element of this object be the value of the

real-valued (double-typed) operand.

Members to be Implemented

• void pop_back();
– Removes the last element in the vector, effectively

reducing the vector size by one and invalidating all
references to it.

• void push_back(double x);
– Adds a new element at the end of the vector, after its

current last element. The content of this new element is
initialized to a copy of x.

• size_t capacity() const;
– Returns the size of the allocated storage space for the

elements of the vector container.

Members to be Implemented

• size_t size() const;
– Returns the number of elements in the vector container.

• void reserve(size_t n);
– Requests that the capacity of the allocated storage space

for the elements of the vector container be at least
enough to hold n elements.

Note that size_t is defined in the library cstdlib.

Members to be Implemented

• bool empty() const;
– Returns whether the vector container is empty, i.e.,

whether its size is 0.

• void clear();
– All the elements of the vector are dropped: their

destructors are called, and then they are removed from
the vector container, leaving the container with a size of 0.

Due Date

• Soft deadline: May 29, 2014
• Hard deadline: June 5, 2014

– But, deduct 10% per one day from your original score
Submission date Deduction rate

May 30 10 %

May 31 20 %

June 1 30 %

June 2 40 %

June 3 50 %

June 4 60 %

June 5 70 %

June 6 100 %

Notice

• Do not use “printf()” and “scanf()” functions!
• You should never use global variables
• Each member function/operator should have

its pre-condition and post-condition as
comments
– E.g.,
return-type MyDoubleVector::memberFunction(…);
// precondition: …
// postcondition: …

Notice (cont’d)

• Your class will be tested in another test program.
• You should submit a compressed file (HW6_your-

ID.zip) containing the following five files to the web-
site (http://info.kw.ac.kr)
– HW6_your-ID.hwp/doc // report document
– HW6_your-ID.cpp // your main function (a test program)
– MyDoubleVector.cpp // class implementation only
– MyDoubleVector.h // class definition only
– HW6_your-ID.exe // executable file

http://info.kw.ac.kr/

Notice (cont’d)

• Source code
– It should be compiled in Visual Studio 2010 or higher, or

g++
• You should note your environment in your report.

– Your name and student ID should be noted at the top of
your source code in the form of comment

• Report
– Free format
– But, it must include several examples of your program and

your own discussion
– It will be an important factor for getting a good score

	Advanced Programming 2015
	Homework #6
	Constraints
	Members to be Implemented
	Members to be Implemented
	Members to be Implemented
	Members to be Implemented
	Members to be Implemented
	Members to be Implemented
	Members to be Implemented
	Due Date
	Notice
	Notice (cont’d)
	Notice (cont’d)

