
Kruskal’s Algorithm
An Algorithm to Find a Minimum Spanning Tree In an Undirected Graph

Sungjae Cho

Published in Dec. 11, 2016

 In this essay, I inspect Kruskal’s algorithm, which finds a minimum spanning tree in a connected graph. Before we get
into the inspection, we have to know some terms required to start our journey.

Terms
Definition
A graph is a collection of points and lines connecting some subset of them. In general, a point is called a vertex and a

line an edge.

– Matheworld, http://mathworld.wolfram.com/Graph.html

Definition
A tree is a simple, undirected, connected, acyclic graph.

Definition
A spanning tree 𝑇𝑇 of an undirected graph 𝐺𝐺 a subgraph that is a tree which includes all of the vertices of 𝐺𝐺.

 – Wikipedia, https://en.wikipedia.org/wiki/Spanning_tree

A spanning tree of a graph on 𝑛𝑛 vertices is a subset of 𝑛𝑛 − 1 edges that form a tree (Skiena 1990, p. 227).

– Mathworld, http://mathworld.wolfram.com/SpanningTree.html

(Intuition: Connecting 𝑛𝑛 vertices with 𝑛𝑛 − 1 edges means the least number of edges.)

Definition
 In a weighted graph, a minimum spanning tree is a spanning tree that has the minimum weight sum of of its edges.

(Comment: In a connected graph, a minimum spanning can exist only one or more than one.)

Definition
A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal

choice at each stage with the hope of finding a global optimum.

– Wikipedia, https://en.wikipedia.org/wiki/Greedy_algorithm

http://mathworld.wolfram.com/Graph.html
https://en.wikipedia.org/wiki/Spanning_tree
http://mathworld.wolfram.com/SpanningTree.html
https://en.wikipedia.org/wiki/Greedy_algorithm

Minimum Spanning Tree
When We Use Minimum Spanning Trees
Minimum spanning trees are used in civil network planning, computer network routing protocol, and cluster analysis.

Imagine the case that we are requested to build a railroad system in order to connect all the cities in a country.
Moreover, our primary goal is to minimize construction expenditure and connect all cities so that citizens can commute
between two cities just by using train transportation. Then, first, we investigate the cost to build a railroad between
each city. An undirected, connected graph can be made and weighted with respect to the costs. Second, find a spanning
tree in the graph that minimizes the weight sum of all connecting edges. The spanning tree is called a minimum spanning
tree.

We can see when a minimum spanning tree can be used through the previous case.

How Important to Find a Spanning Tree In a Graph
Finding a spanning tree is a process to transform a graph problem to a tree problem. A tree has recursive structure.

That is, a tree can be divided into several subtrees. For the recursive structure, it is easy to design algorithms to solve the
problems of a tree.

In the study of algorithms, there is an algorithm design paradigm based on multi-branched recursion, which is called
divided and conquer. The existence of the paradigm implies that a great number of algorithms approach problems in a
recursive way.

On the other hand, it is much harder to design algorithms for general graphs. Therefore, transforming a graph problem
to a tree, namely, finding a spanning tree in a graph is quite important.

Let us see how Kruskal’s algorithm really operates.

Kruskal's algorithm
 Kruskal’s algorithm operated for an undirected, connected graph. The following procedure is how Kruskal’s algorithm
behaves.

1. Arrange all edges in their increasing order of weight.
2. Add the edge which has the least weight if the edge does not make a cycle.
3. Exclude the considered edge from our consideration.
4. If there are remaining edges, execute step 2 again for the remaining edges.

If there are no remaining edges, then, return the selected edges and end the algorithm.

Greedy Algorithms
Since Kruskal’s algorithm is a greedy algorithm, the algorithm is unable to guarantee the optimal time to find a

minimum spanning tree. It does not mean the algorithm produces a spanning tree that is not a minimum spanning tree.

 Let us see how Kruskal’s algorithm is operated by observing the following example.

Example
 An undirected, connected graph is given.

 [Step 1] Arrange all edges in their increasing order of weight.

 [Step 2] The edge {v3, v4} is an edge that has the minimum weight among all edges. The edge does not make a cycle.
Select the edge.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v2, v4} is an edge that has the minimum weight among all remaining edges. The edge does not make
a cycle. Select the edge.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v1, v5} is an edge that has the minimum weight among all remaining edges. The edge does not make
a cycle. Select the edge.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v4, v5} is an edge that has the minimum weight among all remaining edges. The edge does not make
a cycle. Select the edge.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v2, v5} is an edge that has the minimum weight among all remaining edges. The edge makes a cycle.
The edge cannot be an edge in a tree.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v2, v3} is an edge that has the minimum weight among all remaining edges. The edge makes a cycle.
The edge cannot be an edge in a tree.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v1, v2} is an edge that has the minimum weight among all remaining edges. The edge makes a cycle.
The edge cannot be an edge in a tree.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v1, v6} is an edge that has the minimum weight among all remaining edges. The edge does not make
a cycle. Select the edge.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There are remaining edges. Then, execute step 2 again for the remaining edges.

 [Step 2] The edge {v5, v6} is an edge that has the minimum weight among all remaining edges. The edge makes a cycle.
The edge cannot be an edge in a tree.

 [Step 3] Exclude the considered edge from our consideration.

 [Step 4] There is no remaining edge. Then, execute step 2 again for the remaining edges. Then, return the selected
edges and end the algorithm.

Finally, we made a minmum spanning tree. Let us check whether the result is a minimum spanning tree.

First, because the result is connected and has no cycle, it is a tree. Also, there are 6 vertices and 5 edges, which is the
mimimum number of edges we can choose in a graph of 6 vertices. Thus, the tree is a spanning tree of the graph.

 Second, we have to prove the result tree has really the minimal number of edges. We need a mathematical proof.

Proof of Correctedness
The proof that Kruskal’s algorithm generates a minimum spanning tree requires two proofs.

1. Prove that the algorithm produces a spanning tree.
2. Prove the constructed spanning tree is of minimal weight.

Spanning Tree
• Let 𝐺𝐺 be an undirected, connected graph.
• Following the algorithm, every edge is checked whether the edge is a cycle.
• If the edge makes a cycle, the two vertices of the edge are already connected.
• If the edge does not make a cycle, the vertices of the edge are not connected yet.
• After getting through all process of the algorithm, all vertices become connected. Besides, any cycle cannot be

added in a new graph produced by the algorithm. Hence, the new graph is a tree. Consequently, since the new
graph is a connected graph in G, the tree is a minimum spanning tree in 𝐺𝐺.

Minimality
We show that the following proposition 𝑃𝑃 is true by induction. If 𝐹𝐹 is the set of edges chosen at any stage of the

algorithm, then there is some minimum spanning tree that contains 𝐹𝐹.

• Clearly 𝑃𝑃 is true at the beginning, when F is empty: any minimum spanning tree will do, and there exists one
because a weighted connected graph always has a minimum spanning tree.

• Now assume 𝑃𝑃 is true for some non-final edge set 𝐹𝐹 and let 𝑇𝑇 be a minimum spanning tree that contains 𝐹𝐹. If
the next chosen edge 𝑒𝑒 is also in 𝑇𝑇, then 𝑃𝑃 is true for 𝐹𝐹 + 𝑒𝑒. Otherwise, 𝑇𝑇 + 𝑒𝑒 has a cycle 𝐶𝐶 and there is
another edge 𝑓𝑓 that is in 𝐶𝐶 but not 𝐹𝐹. (If there were no such edge 𝑓𝑓, then 𝑒𝑒 could not have been added to 𝐹𝐹,
since doing so would have created the cycle 𝐶𝐶.) Then 𝑇𝑇 − 𝑓𝑓 + 𝑒𝑒 is a tree, and it has the same weight as 𝑇𝑇, since
𝑇𝑇 has minimum weight and the weight of 𝑓𝑓 cannot be less than the weight of 𝑒𝑒, otherwise the algorithm would
have chosen 𝑓𝑓 instead of 𝑒𝑒. So 𝑇𝑇 − 𝑓𝑓 + 𝑒𝑒 is a minimum spanning tree containing 𝐹𝐹 + 𝑒𝑒 and again 𝑃𝑃 holds.

• Therefore, by the principle of induction, P holds when 𝐹𝐹 has become a spanning tree, which is only possible if 𝐹𝐹
is a minimum spanning tree itself.

The proof of minimality is quoted from the article of Kruscal’s algorithm in English Wikipedia,
https://en.wikipedia.org/wiki/Kruskal's_algorithm#Proof_of_correctness.

https://en.wikipedia.org/wiki/Kruskal's_algorithm#Proof_of_correctness

References
1. https://en.wikipedia.org/wiki/Kruskal's_algorithm
2. https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
3. http://mathworld.wolfram.com/SpanningTree.html
4. https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.htm
5. https://en.wikipedia.org/wiki/Minimum_spanning_tree
6. https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
7. https://en.wikipedia.org/wiki/Greedy_algorithm

Further Reading
1. Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman

problem". Proceedings of the American Mathematical Society. 7: 48–50
• This is the first writing Kruskal’s algorithm first appeared.

https://en.wikipedia.org/wiki/Kruskal's_algorithm
https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
http://mathworld.wolfram.com/SpanningTree.html
https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.htm
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Joseph_Kruskal
https://en.wikipedia.org/wiki/Proceedings_of_the_American_Mathematical_Society

	Terms
	Definition
	Definition
	Definition
	Definition
	Definition

	Minimum Spanning Tree
	When We Use Minimum Spanning Trees
	How Important to Find a Spanning Tree In a Graph

	Kruskal's algorithm
	Greedy Algorithms
	Example

	Proof of Correctedness
	Spanning Tree
	Minimality

	References
	Further Reading

